
CAPE: Covariate-Adjusted Pre-Training for Epidemic
Time Series Forecasting

Zewen Liu
Department of Computer Science

Emory University
Atlanta, Georgia

zewen.liu@emory.edu

Juntong Ni
Department of Computer Science

Emory University
Atlanta, Georgia

juntong.ni@emory.edu

Max S. Y. Lau
Rollins School of Public Health

Emory University
Atlanta, Georgia

msy.lau@emory.edu

Wei Jin
Department of Computer Science

Emory University
Atlanta, Georgia

wei.jin@emory.edu

Abstract

Accurate forecasting of epidemic infection trajectories is crucial for safeguarding
public health. However, limited data availability during emerging outbreaks and the
complex interaction between environmental factors and disease dynamics present
significant challenges for effective forecasting. In response, we introduce CAPE,
a novel epidemic pre-training framework designed to harness extensive disease
datasets from diverse regions and integrate environmental factors directly into the
modeling process for more informed decision-making on downstream diseases.
Based on a covariate adjustment framework, CAPE utilizes pre-training combined
with hierarchical environment contrasting to identify universal patterns across
diseases while estimating latent environmental influences. We have compiled a
diverse collection of epidemic time series datasets and validated the effectiveness of
CAPE under various evaluation scenarios, including full-shot, few-shot, zero-shot,
cross-location, and cross-disease settings, where it outperforms the leading baseline
by an average of 9.9% in full-shot and 14.3% in zero-shot settings. The code will
be released upon acceptance.

1 Introduction

Infectious disease outbreaks consistently challenge public health systems, affecting both individ-
ual well-being and economic stability [1]. Effective management of these outbreaks hinges on
accurate epidemic forecasting, which involves predicting future incidences like infection cases and
hospitalizations [2, 3, 4]. Over the years, various models have been developed to address this need.
These include mechanistic models like SIR [5] and statistical models like ARIMA [6, 7], as well as
advanced machine learning methods such as LSTM and GRU [8], which have proven instrumental in
forecasting disease spread and supporting informed public health decision-making.

Despite the advancements, current models are typically trained for specific diseases within particular
geographic regions, limiting their ability to integrate insights from diverse sources spanning multiple
pathogens and spatiotemporal contexts. This narrow focus can impede a comprehensive understanding
of disease dynamics and the design of effective outbreak responses, especially during novel or
emergent outbreaks when observations are typically scarce. Given the extensive and diverse outbreak
data collected over decades and across various geographies, pre-training on such a broad dataset
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Figure 1: (a) CAPE encoder and environment estimator with latent
representations; (b) Hierarchical environment contrasting for tem-
poral and environment representations; (c) Random masking and
reconstruction with environment estimation to capture universal pat-
terns; (d) EM algorithm to iteratively optimize model parameters and
environment representations.
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Figure 2: Structural causal
model for epidemic foresting,
where Z refers to the environ-
ment states, and Xs and Xc re-
fer to the spurious and causal
factors of the input.

could potentially enable the development of more generalizable models with greater applicability
and adaptability across different pathogens and contexts. This raises an important question: Can

we leverage lessons from diverse historical disease time series to develop a generalized model that

enhances epidemic forecasting accuracy?

To address the above question, we draw inspiration from the success of large pre-trained transformer-
based models [9] and develop a pre-trained epidemic forecasting model using extensive disease time
series data to distill generalizable knowledge across pathogens and contexts. The pre-trained model
can be subsequently fine-tuned for specific diseases or geographical regions. While it is possible
to adapt general time series foundation models [10, 11] to epidemic forecasting, their pre-trained
corpus mostly consists of non-epidemic data, which may not accurately capture epidemic dynamics
and infection trajectories, potentially degrading forecasting accuracy. Although an early effort has
been made in epidemic pre-training [12], it overlooks critical external factors such as temperature,
elevation, and public health policies and interventions – factors are known to influence the dynamics
of disease spread in space and time [13] – potentially yielding suboptimal performance. For instance,
dengue infection spread may exhibit distinct dynamics in different geographical regions due to
variations in temperature and humidity [14]. Without accounting for these external factors, models
risk failing to capture their complex interplay with pathogens and producing inaccurate forecasts.
Throughout this paper, we refer to these external factors as environments.

Nevertheless, the need to robustly and effectively account for the environment further intensifies the
challenge of developing an epidemic pre-training framework that is generalizable across varying
pathogens and contexts. A major obstacle is the shift in the temporal distribution of infection
trajectories between training and test datasets, often driven by the changes in the environment.
Insufficient consideration of such distribution shifts can obscure the relationship between historical
infection data and future predictions (for a detailed discussion, see Appendix A.8), compromising
a model’s ability to make accurate forecasts. As such, it is crucial to disentangle the influence of
changing environments from other more intrinsic factors (e.g., a pathogen’s infection rate) affecting
disease transmission dynamics. Yet, exact and explicit mechanisms by which the environment
influences the disease dynamics of a particular pathogen are often not fully understood, which
necessitates a sophisticated modeling approach to identify and separate these latent environmental
influences.

Our Solution. To integrate insights from extensive historical diseases and effectively model envi-
ronmental factors, we propose Covariate-Adjusted Pretraining for Epidemic forecasting (CAPE) to
capture the universal patterns of disease dynamics, as shown in Figure 1. Our approach addresses the
challenges of optimizing the model with limited observations of a single disease infection trajectory
and the complex influence of the environment by combining a pre-training framework with explicit en-

vironment modeling. Drawing on principles from causal analysis and covariate adjustment [15], CAPE
aims to estimate the latent environments and control for their influences for epidemic forecasting.
Specifically, during the pre-training phase, CAPE utilizes environment-aware self-supervised learning,
including random masking (Figure 1(c)) and hierarchical environment contrasting (Figure 1(b)),
to enhance its understanding of the disease dynamics and environmental influence. Furthermore,
an environment estimator is introduced, which estimates dynamic environments based on latent
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environment representations learned during pre-training using Expectation-Maximization algorithm.
Our contributions can be summarized as follows:

• We propose a novel epidemic pre-training framework, namely CAPE, that learns representations
of environments and performs covariate adjustment on the input epidemic time series data, which
aims to disentangle the inherited disease dynamics from the environment.

• We assemble a diverse collection of epidemic time series datasets from various diseases and regions,
serving as a crucial testbed for evaluating pre-trained epidemic forecasting models. This allows
for extensive testing across multiple scenarios, including few-shot, zero-shot, cross-location, and
cross-disease evaluations.

• We demonstrate the effectiveness of pre-training on epidemic datasets, showcasing superior perfor-
mance across various downstream datasets and settings. Notably, CAPE surpasses the best baseline
by an average of 9.9% in the full-shot setting and 18.1% in the zero-shot setting across all tested
downstream datasets.

• We provide an in-depth analysis of how pre-training and environment estimation affect downstream
performance and mitigate the impact of distribution shifts.

2 Related Work and Problem Definition

Epidemic Forecasting Models. Traditionally, epidemic forecasting employs models like ARIMA [6],
SEIR [16], and VAR [17]. ARIMA predicts infections by analyzing past data and errors, SEIR models
population transitions using differential equations, and VAR captures linear inter-dependencies by
modeling each variable based on past values. Recently, deep learning models—categorized into
RNN-based, MLP-based, and transformer-based—have surpassed these methods. RNN-based models
like LSTM [18] and GRU [19] use gating mechanisms to manage information flow. MLP-based
models use linear layers [20] or multi-layer perceptrons [21, 22] for efficient data-to-prediction
mapping. Transformer-based models [23, 24, 25] apply self-attention to encode time series and
generate predictions via a decoder. However, these models are limited in that they typically utilize
data from only one type of disease without considering valuable insights and patterns from diverse
disease datasets.

Pre-trained Time Series Models. To enhance performance and enable few-shot or zero-shot
capabilities, transformer-based models often employ pre-training on large datasets, which typically
use masked data reconstruction [26, 27] or promote alignment across different contexts [28, 29, 30].
For example, PatchTST [31] segments time series into patches, masks some, and reconstructs the
masked segments. Larger foundational models like MOMENT [32] aim to excel in multiple tasks
(e.g., forecasting, imputation, classification) but require substantial data and computational resources.
In the epidemic context, Kamarthi et al. [12] pre-trained on various diseases, improving downstream
performance and highlighting pre-training’s potential in epidemic forecasting. Nevertheless, all these
models overlook the influence of the environment, and zero-shot ability in epidemic forecasting, along
with the factors affecting the pre-training process, remain unanswered. In this study, we introduce
environment modeling and conduct a thorough analysis of these questions.

Problem Definition. In this study, we adopt a univariate setting: Given a historical time series input:
x 2 RT⇥1, where T is the size of lookback window, the goal of epidemic forecasting is to map x
into target trajectories (e.g. infection rates): y 2 Rh, where h denotes the size of the forecast horizon.
We define X and Y as the random variables of input x and target y respectively. During pre-training,
a representation function g✓ : RT⇥1 ! RT⇥d, where d denotes the dimension of the latent space and
✓ being the parameter of the model, extracts universal properties from a large collection of epidemic
time series datasets Dpre = {D0

1, D
0
2, . . . , D

0
S}. Then, a set of self-supervised tasks Tpre = {Ti}Ri=1

is defined, where each task Ti transforms a sample x ⇠ Dpre into a pair of new input and label: (x̃, ỹ),
and optimizes a loss LTi = Ex⇠Dpre [`Ti(h (g✓(x̃)), ỹ)], with `Ti being the task-specific metric and
h the task-specific head.

3



3 Proposed Method

3.1 Model Design

3.1.1 Causal Analysis for Epidemic Forecasting

As environments influence both historical infection patterns and future disease spread, we draw
inspiration from causal inference [33, 34] and introduce a Structural Causal Model where we treat the
environment Z as a confounder that influences both the independent variable (e.g., historical data X)
and the dependent variable (e.g., future infections Y ). Furthermore, we adopt a causal decomposition
approach [35] that separates X into two components (Figure 2): (1) a spurious factor Xs that is
environment-dependent, and (2) a causal factor Xc that remains environment-independent. Both
factors influence the target Y , with Xs reflecting the impact of environment Z. Since epidemic
dynamics are driven by a finite set of critical factors, such as public health policies, we model Z with
the following assumption:
Assumption 3.1. The environment variable Z follows a categorical distribution p(Z) and takes on
one of K discrete environmental states, denoted as zk. Each state zk is associated with a unique
latent representation ek 2 Rhe , capturing the unique features specific to that environment.

In constructing a predictive model for input x, we define Ŷ as the predicted time series ŷ and model the
predictive distribution p⇥(Ŷ |X) using f⇥(x) = h (g✓(x)), where ⇥ = {✓, }. Training typically
involves maximizing the log-likelihood of p⇥(Ŷ |X), which in practice translates to minimizing the
errors over the pre-training dataset Dpre:

⇥⇤ = argmin
⇥
� 1

|Dpre|
X

(x,y)2Dpre
ky � f⇥(x))k2. (1)

As the environment Z impacts the distribution of the observed data through p(X,Y |Z) =
p(X|Z)p(Y |X,Z), we formulate the following objective:

⇥⇤ =argmin⇥ Ep(Z)[E(x,y)⇠p(Y,X|Z)[ky � f⇥(x))k2]]. (2)

The above equation suggests that the optimal ⇥⇤ depends on the environment distribution p(Z). If we
simply maximize the likelihood p⇥(Ŷ |X), the confounding effect of Z on X and Y will mislead the
model to capture the shortcut predictive relation between the input and the target trajectories, which
necessitates explicit modeling of the environment during pre-training. Given that input infection
trajectories inherently reflect the influence of the environment, it is crucial to develop mechanisms
that disentangle the correlations between infection trajectories and environmental factors.

In this study, we switch to optimize p⇥(Ŷ |do(X)), where the do-operation intervenes the variable
X and removes the effects from other variables (i.e., Z in our case), thus effectively isolating the
disease dynamics from environmental influences. In practice, this operation is usually conducted via
covariate adjustment, particularly backdoor adjustment [36], which controls for the confounder and
uncovers the true causal effects of interest. The theoretical foundation for this is explained through:
p(Y |do(X)) =

R
p(Y |X,Z = z)p(Z = z)dz (see Appendix A.1). Under Assumption 3.1, this

simplifies over different environmental states:

p(Y |do(X)) =
X

Z
p(Y |X,Z = z)p(Z = z). (3)

However, obtaining detailed environmental information, or ek, can be challenging due to variability
in data availability and quality. To address this, we resort to a data-driven approach that treats ek as
learnable parameters and thus allows us to dynamically infer the environmental distribution directly
from the observed data. Specifically, we implement an environment estimator q�(Z|X) that infers the
probability of environment states based on historical inputs together with the latent representations of
each state. Then, we derive a variational lower bound (see Appendix A.1):

log p⇥(Ŷ |do(X)) �

Eq�(Z|X)

h
log p⇥(Ŷ |X,Z)

i
�KL (q�(Z|X) k p(Z)) ,

(4)

where the first term maximizes the model’s predictive power and the second term regularizes the
environment estimator to output a distribution close to the prior distribution p(Z).
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3.1.2 Model Instantiation

To instantiate and train a model that performs the covariate adjustment, we need to model the
environment estimator q�(Z|X) and the predictor p⇥(Ŷ |X,Z).

Latent Environment Estimator q�(Z|X). We model p(Z|X) using a latent environment estima-
tor q�(Z|X). Since environmental influences vary over time, we apply patching [31] to manage
granularity in environment estimation. This prevents overly specific or generalized estimations that
could obscure key temporal fluctuations. We divide the input x into C non-overlapping patches,
x = [x1, . . . ,xC ], where xc 2 RT/C . Then, a self-attention layer fenc captures temporal dependen-
cies between patches, producing contextualized representations h(l)

c = fenc(x
(l)
c ) for each patch at

layer l. Subsequently, since the environment influences only the spurious component of the input,
we introduce a transformation W(l)

s to capture the spurious component of h(l)
c . Finally, we model

q�(Z|X) as a cross-attention layer that captures the relation between each patch and the latent
environment representations:

⇡
(l)
k,c = Softmax

⇣
(W(l)

k ek)
> · (W(l)

s h(l)
c )

⌘
, (5)

where ⇡(l)
k,c is the output probability of the environment zk for the c-th patch, and W(l)

k is a transfor-
mation layer for ek. Such operation not only takes into account the contextualized representation
of the current time period, but also considers the latent environment representations, which made it
possible to infer the densities of other environment distributions with different latent representations.

Epidemic Predictor p⇥(Ŷ |X,Z). Unlike previous studies, which do not explicitly model environ-
ment states, we incorporate these states directly into the input using their latent representations ek.
Specifically, we model the predictor p⇥(Ŷ |X,Z) by employing a weighted sum over the combined
representations of each environment and the input using Hadamard product, i.e., fenc(x

(l)
c ) � ek.

Finally, we apply a feed-forward layer to compute the output representations, serving as the input for
the next layer. Integrating these components, the CAPE encoder can be expressed as:

x(l+1)
c = �

 
W(l)

f

KX

k=1

⇡
(l)
k,c

h
fenc(x

(l)
c )� ek

i!
, (6)

where � represents the activation function and W(l)
f denotes the learnable parameters of the

feedforward layer. Assuming L layers are stacked, we acquire the final representation x(L) =

[x(L)
1 ,x(L)

2 , . . .x(L)
C ] = g✓(x) 2 RC·d and apply a task-specific head to predict the target variable

y = h (x(L)), where h is a linear transformation.

3.2 Pre-training Objectives for Epidemic Forecasting

CAPE captures diverse epidemic time series dynamics through self-supervised learning tasks that
identify universal patterns in the pre-training dataset. While previous studies neglected the con-
founding effects of environmental factors on input-label pairs in Tpre, CAPE seamlessly integrates
environment estimation into the self-supervised framework.

Random Masking with Environment Estimation. To capture features from large unlabeled
epidemic time series data, we employ a masked time series modeling task [12, 32] (Figure 1(c))
that masks 30% of input patches. As depicted in Figure 2, the generation of X depends on the
environment Z, indicating that accurate patch reconstruction requires capturing both temporal and
environmental dependencies. Unlike prior studies that overlook the environment’s role, we utilize an
environment estimator q�(Z|X) to infer Z, aiding both reconstruction and estimator training. During
pre-training, input x is transformed into masked input and label pairs (x̃,x), with the original time
series serving as label y. The reconstruction x̂ = h (g✓(x̃)) is optimized using Mean Squared Error
(MSE): Lrecon(x, x̂) = MSE(x̂,x).

Hierarchical Environment Contrasting. Two consecutive time series samples, x and x0, can
include overlapping regions when divided into multiple patches. These overlapping patches, although
identical, can exhibit contextual variations influenced by their different adjacent patches. As indicated
by Eq. (5), such variations can alter the latent patch-wise representations, leading to inconsistencies
in the environmental estimates for the same patch across the samples. To ensure that each patch’s
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environment remains context-invariant, we propose a hierarchical environment contrasting scheme
inspired by [30]. We define an aggregated latent environment representation ê(l)c =

PK
k=1 ek⇡

(l)
k,c to

represent the weighted environment states for the c-th patch. For contrastive loss computation, we use
the combined representation Ê(l)

j,c = �(W(l)
f (ê(l)c � h(l)

c )) for c-th patch of sample j. Additionally,

Ê0(l)
j,c denotes the representation in the context of x0. Finally, we compute a patch-wise contrastive

loss:
LCL(j, c) = �Ê(j,c) · Ê0

(j,c)

+ log

 
X

b2B

exp
⇣
Ê(j,c) · Ê0

(b,c)

⌘
+ Ij 6=b exp

⇣
Ê(j,c) · Ê(b,c)

⌘!

+ log

 
X

t2⌦

exp
⇣
Ê(j,c) · Ê0

(j,t)

⌘
+ Ic 6=t exp

⇣
Ê(j,c) · Ê(j,t)

⌘!
.

where B is the batch size, ⌦ denotes the overlapping patches, and I is the indicator function. The
above equation contains three key terms: (1) The first term encourages the representations of the
same patch from two different contexts to be similar, which preserves the context-invariant nature of
environments. (2) The second term (Instance-wise Contrasting) treats ê(l)c from different samples
in the batch as negative pairs, which promotes dissimilar representations, and enhances diversity
among instances. (3) The third term (Temporal Contrasting) treats the representations of different
patches from overlapping regions (⌦) as negative pairs, which encourages differences across temporal
contexts.
Pre-Training Loss. Given a batch of B samples X 2 RB⇥T , we combine the reconstruction loss
and the contrastive loss, yielding the final loss function for pre-training:

Lfinal =
X

x2X
Lrecon(x, x̂) + ↵LCL(Ê

(L)
, Ê0(L)), X ⇠ Dpre

where L is the number of layers, and ↵ is the hyperparameter used to balance the contrastive loss and
the reconstruction loss. Further analysis can be found in Appendix A.10.

3.3 Optimization of the CAPE Framework

To effectively maximize the variational lower bound in Eq. (4), we employ the Expectation-

Maximization (EM) algorithm to iteratively update the latent environments and epidemic predictor.
The pseudo algorithm for the optimization procedure is provided in Appendix A.3.

E-Step: Estimating Latent Environments. In the E-step, we aim to identify the environment
states Z and the corresponding distribution p(Z) that result in the target distribution p(Y ). This
involves maximizing the expected likelihood of p(Y |Z) given p(Z). We freeze the epidemic pre-
dictor p⇥(Ŷ |X,Z) and the environment estimator q�(Z|X), treating them as oracles, which means
p⇥(Ŷ |X,Z) = p(Y |X,Z) and q�(Z|X) = q(Z|X). While actively updating the environment
representations E = [e1, e2, ...ek], the optimization of the environment states Z is learned through
maximizing Ep(Z)[p(Y |Z)] = Ep(X)[Eq�(Z|X)p⇥(Y |X,Z)], which is equivalent to minimizing the
expected reconstruction loss:

Et+1  argminE
⇥
Ex⇠p(X)[Lrecon(x, x̂)]

⇤
. (7)

We use subscript t to denote the pre-update distribution and derive the updated distribution p
t+1(Z)

as qt+1
�t

(Z), along with the updated environment representations Et+1.

M-Step: Optimizing Epidemic Predictor. In the M-step, we aim to optimize the epidemic predictor
by maximizing its predictive power and regularizing the environment distribution. During this step,
the environment representations Et+1 are held fixed. We have the following theorem:

Theorem 3.2. Assuming q
t+1
�t

(Z) = p
t+1(Z) and an L2 norm is applied on �, the variational lower

bound in Eq. (4) can be approximated as follows:

Ep(X)

h
Eqt+1

�t
(Z|X)

h
log pt+1

⇥t+1
(Ŷ |X,Z)

ii
� C, (8)

which is equivalent to minimizing the expected reconstruction loss Ex⇠p(X)[Lrecon(x, x̂)] .
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Table 1: Univariate forecasting results with horizons ranging from 1 to 16 future steps. The lookback
window length is set to 36 and all models are evaluated using MSE. Note that performance rankings
are distinguished by color coding: Best, Second Best, Third Best. �(%) stands for the relative
improvement of CAPE over the baselines in terms of average MSE over all horizons.

Dataset Horizon Statistical Model RNN-Based MLP-Based

Transformer-Based

CAPE
ARIMA LSTM GRU Dlinear

Non-Pre-trained Pre-trained

Informer Autoformer Fedformer PEM MOMENT PatchTST

ILI USA

1 0.138 0.338 0.259 0.220 0.175 0.457 0.368 0.179 0.269 0.195 0.155
2 0.203 0.377 0.301 0.247 0.370 0.710 0.380 0.226 0.321 0.264 0.200
4 0.354 0.458 0.386 0.376 0.517 0.670 0.433 0.304 0.397 0.385 0.270
8 0.701 0.579 0.529 0.506 0.597 0.842 0.570 0.538 0.510 0.535 0.404
16 1.121 0.691 0.626 0.617 0.812 0.835 0.701 0.570 0.610 0.485 0.516
Avg 0.503 0.489 0.420 0.393 0.494 0.703 0.490 0.363 0.421 0.373 0.309
� (%) 38.57% 36.81% 26.43% 21.37% 37.45% 56.05% 36.94% 14.88% 26.60% 17.16% -

ILI Japan

1 0.358 1.426 1.213 1.016 0.405 0.515 0.525 0.470 0.325 0.413 0.290
2 0.772 1.635 1.458 1.294 0.666 0.855 1.151 0.755 0.586 0.698 0.535
4 1.720 1.975 1.870 1.758 1.234 1.150 1.455 1.207 1.082 1.147 0.944
8 2.981 2.373 2.365 2.285 1.688 1.866 2.012 1.810 1.706 1.708 1.650
16 2.572 2.023 2.010 2.007 1.551 2.654 4.027 1.766 2.054 1.688 1.911
Avg 1.680 1.886 1.783 1.672 1.109 1.408 1.834 1.202 1.151 1.131 1.066
� (%) 36.55% 43.48% 40.21% 36.24% 3.88% 24.29% 41.88% 11.31% 7.38% 5.74% -

Measles

1 0.071 0.182 0.143 0.133 0.066 0.203 0.321 0.085 0.113 0.094 0.083
2 0.120 0.223 0.176 0.184 0.153 0.257 0.817 0.128 0.138 0.127 0.112
4 0.225 0.310 0.258 0.296 0.288 0.331 0.226 0.213 0.186 0.205 0.161
8 0.483 0.567 0.471 0.512 0.501 0.671 0.403 0.417 0.351 0.377 0.310
16 1.052 1.110 1.013 1.088 0.904 1.115 0.754 0.806 0.818 0.722 0.752
Avg 0.390 0.478 0.412 0.443 0.382 0.515 0.504 0.330 0.321 0.305 0.269
� (%) 31.03% 43.72% 34.71% 39.28% 29.58% 47.77% 46.63% 18.49% 16.20% 11.80% -

Dengue

1 0.244 0.250 0.261 0.224 0.255 0.525 0.521 0.225 0.420 0.240 0.223
2 0.373 0.343 0.343 0.316 0.450 0.807 0.670 0.314 0.579 0.334 0.302
4 0.696 0.564 0.579 0.560 0.798 0.957 0.766 0.571 0.661 0.586 0.561
8 1.732 1.168 1.183 1.256 1.239 1.684 1.539 1.223 1.308 1.292 1.046
16 4.082 3.876 3.315 3.109 2.659 3.364 2.934 3.376 2.532 2.537 2.509
Avg 1.426 1.240 1.136 1.093 1.080 1.467 1.286 1.142 1.100 1.000 0.892
� (%) 37.45% 28.06% 21.48% 18.39% 17.41% 39.20% 30.64% 21.89% 18.91% 10.80% -

Covid

1 33.780 22.592 22.009 23.811 34.161 42.049 28.130 25.088 32.376 23.645 21.548
2 33.193 23.460 22.542 24.809 24.883 30.631 28.059 23.123 35.418 25.047 22.224
4 32.482 24.729 24.816 26.345 31.328 41.029 29.432 23.889 36.251 24.224 22.476
8 36.573 31.019 33.934 33.081 35.964 55.812 41.791 31.217 40.429 31.548 28.403
16 42.910 43.820 41.432 47.561 50.244 47.993 69.976 51.265 52.590 43.309 40.555
Avg 35.787 29.124 28.947 31.121 35.316 43.503 39.478 30.917 39.413 29.555 26.559
� (%) 25.79% 8.81% 8.25% 14.66% 24.80% 38.95% 32.72% 14.10% 32.61% 10.14% -

Table 2: Few-shot learning results with horizons ranging from 1 to 16 future steps. The length of
the lookback window is set to 36. Each model is evaluated after being trained on 20%, 40%, 60%,
and 80% of the full training data. �(%) stands for the relative improvement of the model after
training with 20% more data in terms of average MSE over all horizons. The full result is shown in
Appendix A.5.

Dataset/Model CAPE PatchTST Dlinear MOMENT PEM
20% 40% 60% 80% 100% 20% 40% 60% 80% 100% 20% 40% 60% 80% 100% 20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

ILI USA 2.121 1.400 0.760 0.369 0.309 2.114 1.219 0.677 0.401 0.373 2.822 1.594 0.816 0.412 0.346 3.990 1.847 0.913 0.459 0.381 2.143 1.261 0.681 0.419 0.353
�(%) - 33.99% 45.71% 51.45% 16.26% - 42.34% 44.45% 40.77% 6.98% - 43.53% 48.78% 49.51% 16.02% - 53.69% 50.58% 49.72% 17.00% - 41.13% 46.00% 38.33% 15.76%

Dengue 13.335 6.386 2.356 1.511 0.892 13.712 7.304 2.771 1.678 0.984 15.828 8.420 2.850 1.748 1.080 15.697 7.536 2.816 1.733 1.358 12.90 7.055 2.745 1.707 0.964
�(%) - 52.07% 63.12% 35.87% 40.95% - 46.72% 62.06% 39.43% 41.39% - 46.81% 66.15% 38.64% 38.19% - 52.00% 62.63% 38.45% 21.65% - 45.32% 61.09% 37.79% 43.51%

Measles 0.483 0.600 0.381 0.285 0.269 0.863 0.834 0.448 0.359 0.306 1.194 1.130 0.602 0.478 0.394 1.661 0.915 0.425 0.471 0.500 0.670 0.896 0.430 0.364 0.306
�(%) - -24.22% 36.50% 25.20% 5.61% - 3.36% 46.25% 19.91% 14.81% - 5.36% 46.64% 20.63% 17.58% - 44.91% 53.55% -10.59% -6.16% - -33.87% 51.91% 15.35% 15.93%

The detailed proof can be found in Appendix A.1. Theorem 3.2 indicates that the optimization of the
model’s predictive ability can be approximated by Eq. (8), which corresponds to the expectation of
Lrecon. To further enhance robustness, the contrastive loss is combined to regularize the environment
estimator. Therefore, the overall optimization objective becomes minimizing the final pre-training
loss:

⇥t+1  argmin⇥
h
Lfinal(X, X̂,Et+1)

i
. (9)

4 Experiment

4.1 Experiment Setup

Datasets. For pre-training CAPE, PatchTST, and PEM, we manually collected 17 distinct weekly-
sampled diseases from Project Tycho [37]. For evaluation, we utilize five downstream datasets
covering various diseases and locations: ILI USA [38], ILI Japan [39], COVID-19 USA [40],
Measles England [41], and Dengue across countries [42]. Additionally, RSV [43] and Monkey
Pox [44] infections in the US are used to test zero-shot performance. More details can be found in
Appendix A.2.
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Table 3: Zero-shot performance with a lookback window length of 12. All results are averaged over 4
weeks or days in the future. �(%) stands for the relative improvement of CAPE over the baselines.

Dataset � (%) CAPE PatchTST PEM MOMENT
ILI USA 9.26% 0.147 0.164 0.162 0.549
ILI Japan 17.06% 0.705 0.907 0.850 2.062
Measles 3.97% 0.145 0.167 0.159 0.533
Monkey Pox 20.00% 0.0004 0.0005 0.0005 0.0013
Dengue (mixed) 10.17% 0.371 0.427 0.413 1.624
RSV 26.06% 0.834 1.128 1.260 1.849
Covid (daily interval) 13.80% 5.173 6.001 6.320 18.881

Baselines. For baselines, we leverage the models from the comprehensive toolkit EpiLearn [45]. To
provide a comprehensive evaluation, we compare CAPE with two sets of models: non-pretrained and
pre-trained. Non-pretrained models include statistical methods like ARIMA [46], RNN-based [18, 19]
approaches such as LSTM and GRU, the linear model DLinear [20], and transformer-based meth-
ods [23, 24, 25]. For pre-trained models, we evaluate popular approaches including PatchTST [31],
PEM [12], and a time series foundation model MOMENT [32]. More experimental details can be
found in Appendix A.3.

4.2 Baseline Comparison

We now evaluate the CAPE model under three settings: fine-tuning, few-shot fine-tuning, and zero-shot

forecasting.

4.2.1 Fine-Tuning (Full-Shot Setting)

For non-pre-trained models, we train the entire model on the training split, while for pre-trained
models, we fine-tune on downstream datasets by transferring the task-specific head h from pre-
training to the forecasting task. We evaluate short-term and long-term performance by reporting
MSE across horizons from 1 to 16. From Table 1, we observe: (a) CAPE achieves the best average
MSE across all downstream datasets. It outperforms the best baseline by 9.91% on average and up to
14.85%. On the COVID dataset, CAPE performs best across all horizons, showing effectiveness on
novel diseases. (b) Models like PEM, PatchTST, and MOMENT consistently rank second or third
on 4 out of 5 downstream datasets. The best pre-trained model (excluding CAPE) outperforms the
best non-pre-trained model by 6.223% on average. Among them, PatchTST has the highest average
performance, surpassing PEM by 5.51% and MOMENT by 10.45%. Additionally, PEM outperforms
MOMENT by 4.86%, indicating the importance of epidemic-specific pre-training. (c) Informer
consistently outperforms Autoformer and Fedformer by 24.40% and 17.90% respectively, due to
its sparse attention mechanism that reduces overfitting. Informer also surpasses Dlinear by 1.90%,
suggesting that careful selection of model size and parameters is crucial for optimal performance. (d)
Furthermore, environment modeling proves valuable, as CAPE consistently outperforms PatchTST,
which shares a similar design. While both models are pre-trained on the epidemic-specific datasets,
CAPE surpasses PatchTST by 11.13%.

4.2.2 Few-Shot and Zero-Shot Performance

Few-Shot Forecasting. In real-world scenarios, predicting outbreaks of diseases unknown or in new
locations is challenging for purely data-driven models due to limited initial data. Thus, few-shot or
zero-shot forecasting capabilities are essential for epidemic models. To simulate a few-shot scenario,
we reduce the original training data from 100% to [20%, 40%, 60%, 80%]. We report the average
MSE across 1 to 16 time steps. From Table 8, we make the following observations: (a) With an
increasing volume of training materials, the performance of all models consistently improves. (b)
CAPE achieves the best performance in most scenarios, demonstrating the superior few-shot ability.
(c) Compared with models pre-trained on epidemic-specific datasets, Dlinear failed to achieve better
performance when only 20% of training data is available. However, Dlinear is able to outperform
MOMENT on ILI USA and Measles datasets when both models are trained or fine-tuned using 20%
training data, which indicates the importance of pre-training. (d) Though CAPE achieves the best
average performance on the ILI USA dataset when the training material is reduced, it achieves a good
performance in short-term forecasting from 1 to 4 weeks (see Appendix A.5).
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Table 4: Ablation study of removing components from CAPE.
Dataset Model H=1 H=2 H=4 H=8 H=16 Avg

ILI USA

CAPE 0.155 0.200 0.270 0.404 0.516 0.309
w/o Env 0.326 0.448 0.508 0.642 0.735 0.532
w/o Contrast 0.174 0.241 0.335 0.492 0.570 0.363
w/o Pretrain 0.158 0.202 0.283 0.408 0.545 0.319

Measles

CAPE 0.069 0.096 0.155 0.280 0.743 0.269
w/o Env 0.083 0.111 0.168 0.407 0.755 0.304
w/o Contrast 0.090 0.124 0.276 0.431 0.801 0.344
w/o Pretrain 0.074 0.113 0.223 0.402 0.816 0.326

Dengue

CAPE 0.218 0.301 0.540 1.193 2.210 0.892
w/o Env 0.232 0.316 0.484 1.089 3.622 1.149
w/o Contrast 0.198 0.273 0.460 1.128 3.329 1.078
w/o Pretrain 0.210 0.276 0.449 1.115 3.759 1.162

Zero-Shot Forecasting. To further demonstrate the potential of our model, we evaluate CAPE in
a zero-shot setting. Specifically, for transformer-based models, we retain the pre-training head and
freeze all parameters during testing. All models are provided with a short input sequence of 12 time
steps and tasked with predicting infections for the next 4 time steps. From Table 3, we make the
following observations: (a) CAPE outperforms baselines across all downstream datasets, showing
superior zero-shot forecasting ability. (b) Models pre-trained on epidemic-specific datasets achieve
better performance compared to those pre-trained without epidemic-specific data (MOMENT). This
indicates the necessity of choosing domain-specific materials for pre-training.

4.3 Ablation Study

We conducted an ablation study to assess CAPE’s components (Table 4). Replacing environment
estimators with non-disentangling self-attention layers consistently worsened performance across all
datasets, notably increasing ILI USA’s MSE from 0.309 to 0.532, underscoring the importance of
environmental factors. Similarly, removing contrastive loss while retaining environment estimators
raised Measles’ MSE from 0.269 to 0.344, with smaller increases for ILI USA and Dengue. Training
CAPE directly on downstream datasets without pre-training also decreased performance, with
MSE rising to 0.319 (ILI USA), 0.326 (Measles), and 1.162 (Dengue), though less than removing
environment estimation. These results indicate that all CAPE components are essential for optimal
forecasting and that tailoring component emphasis to dataset characteristics can further enhance
performance.

4.4 Transferability

Cross-Location. We include measles data from the USA in the pre-training dataset. To evaluate our
model’s ability to adapt to cross-region data, we incorporate measles outbreak data from the UK into
the downstream datasets. As shown in Table 4, the pre-trained CAPE outperforms the non-pre-trained
version by 17.48%. While we pre-train our model with influenza data from the USA, the zero-shot
evaluation on the influenza outbreak in Japan also shows superior performance, underscoring the
crucial role of pre-training in enabling generalization to novel regions.

Cross-Disease. While we include various types of diseases in our pre-training dataset, novel diseases
including Dengue (non-respiratory) and COVID-19 that are unseen in the pre-training stage are
incorporated during the downstream evaluation. The ability of our model to adapt to novel diseases is
proven compared to the version not pre-trained on the Dengue dataset (Table 4), improving which
by 23.24%, as well as the superior zero-shot performance on the COVID dataset (Table 3), which
surpasses the MOMENT that is not pre-trained on other diseases by 72.60%.

Cross-Interval. While we only pre-train using weekly-sampled data, our model outperformed the
non-pre-trained version on the irregularly sampled Dengue dataset, demonstrating robustness to
different time intervals. Additionally, on the daily-sampled COVID-19 dataset, our model maintained
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Figure 3: Downstream performance with different numbers of environments and pre-training epochs.

strong zero-shot performance, further illustrating its ability to generalize across varying temporal
resolutions.

4.5 Deeper Analysis

Impact of Pre-Training Epochs. Evaluating four downstream datasets (Figure 3), we find that
increasing pre-training epochs consistently improves performance on Measles and COVID datasets
but degrades it for ILI USA. Additionally, models with more environment states K perform better as
pre-training epochs increase.

Impact of Pre-Training Materials. We examine potential biases in our pre-training dataset by
splitting it into respiratory and non-respiratory diseases. As shown in Figure 4, with similar volumes
of pre-training data, the model performs better on downstream datasets when their disease types align
with the pre-training data (e.g., respiratory diseases). However, the size of the pre-training material
has a more significant impact on downstream performance.

Figure 4: Downstream performance variation when the model is pre-trained with either respiratory or
non-respiratory diseases only.

Impact of Pre-Training Material Scale. To explore how the pre-training material scale affects
downstream performance, we scaled the original pre-training dataset and test on downstream datasets.
As shown in Figure 5, a sudden performance boost is observed at around a 60% reduction for both
Measles and Dengue datasets.

Tackling Distribution Shift. In this study, distribution shifts refer to changes in infection patterns
observed from the training set to the test set. To evaluate distribution shifts, we compute the Central
Moment Discrepancy (CMD) score [47] between training and test distributions for each disease (see
Appendix A.8). Figure 6 shows that our model with environment estimation achieves the lowest
CMD score, demonstrating its effectiveness in mitigating the impact of temporal distribution shifts.

Disentangling Disease Dynamics. We validate our model’s ability to capture intrinsic disease
dynamics by extracting latent embeddings from various datasets and computing the Davies-Bouldin
Index (DBI) for each pair. As shown in Figure 7, CAPE consistently achieves lower DBI scores than
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Figure 5: Downstream performance across pre-training ratios.

Figure 6: We report the CMD scores of the embeddings produced by CAPE with and without
environment estimation, which quantify distributional differences between the training and test sets.

PatchTST across all pairs, demonstrating its superior effectiveness in distinguishing diseases and
separating disease-specific patterns from environmental influences.

Figure 7: Davies-Bouldin Index score between the embeddings of each pair of downstream datasets,
output by the pre-trained model without fine-tuning. A visualization is shown in Appendix A.9.

5 Conclusion

We present Covariate-Adjusted Pre-Training for Epidemic time series forecasting, showcasing
the benefits of pre-training and environment modeling. While leveraging pre-training materials,
CAPE explicitly learns latent representations of the environment and performs backdoor adjustment.
Extensive experiments validate CAPE’s effectiveness in various settings, including few-shot and
zero-shot.
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